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An antiferromagnetic transition is observed in single-crystal EuRh2As2 at a high temperature TN=47 K
compared to the ferromagnetic Weiss temperature �=12 K. We show that the large ratio TN / ����4 is, perhaps
surprisingly, consistent with mean-field theory. A first-order field-induced magnetic transition is observed at
T�TN with an unusual temperature dependence of the transition field. A dramatic magnetic field-induced
reduction in the electronic specific heat coefficient at 1.8–5.0 K by 38% at 9 T is observed. In addition, a strong
positive magnetoresistance and a large change in the Hall coefficient occur below 25 K. Band structure
calculations indicate that the Fermi energy lies on a steep edge of a narrow peak in the density of states.

DOI: 10.1103/PhysRevB.79.220401 PACS number�s�: 75.40.Cx, 71.20.Be, 75.30.Kz, 75.47.Np

The recent discovery of superconductivity with transition
temperatures up to Tc=38 K in the layered iron arsenides
AFe2As2 �A=Ba, Sr, Ca, and Eu� when the A atoms are par-
tially replaced by K �Ref. 1� has led to a renewed interest in
ThCr2Si2-structure materials. We have been carrying out a
search for similar isostructural compounds such as
Ba�Rh,Mn�2As2 �Ref. 2� in an attempt to significantly in-
crease the maximum Tc for this class of compounds. We
studied the physical properties of another member3 of this
structure class, EuRh2As2, and found a variety of novel be-
haviors as reported here.

Our primary results are as follows. First, from our aniso-
tropic magnetic susceptibility � versus temperature T data on
EuRh2As2 single crystals, the Eu ions are found to have an
intermediate valence 2.13�2� unusually close4 to Eu+2, which
has a spin-only magnetic moment with J=S=7 /2. Second,
an unusually large antiferromagnetic �AFM� ordering tem-
perature TN=47 K compared to the ferromagnetic �FM�
�positive� Weiss temperature ��12 K is found. It is widely
assumed that the magnitude of � in the Curie-Weiss law �
=C / �T−�� is the mean-field transition temperature for either
FM or AF ordering of a local moment system, which is the
maximum transition temperature that the system can have.
Magnetic fluctuations and frustration effects reduce the mag-
netic ordering temperature below the mean-field value, so
our observation that TN / ����4�1 is surprising. The reso-
lution of this conundrum is simple: mean-field theory for a
local moment antiferromagnet in fact allows arbitrarily large
values of the ratio TN / ���.5 This can happen in an antiferro-
magnet when FM exchange interactions between spins
within the same sublattice exist, in addition to the usual AF
interactions between spins on opposite sublattices.

Third, a very unusual and dramatic monotonic magnetic
field-induced reduction in the electronic specific-heat coeffi-
cient � is observed at 1.8–5.0 K by 38% at a relatively low
field of 9 T. We suggest that field-induced stabilization4 of
the +2 valence of Eu is centrally involved. Finally, a strong
positive magnetoresistance �MR� develops below 25 K that
violates Kohler’s rule, where ��T� shows a “nonmetallic”
increase with decreasing T at fixed H, together with a large
change in the Hall coefficient below 25 K. These apparently
coupled electronic behaviors have no obvious origin. Our
band structure calculations indicate that the Fermi energy lies

on a steep edge of a sharp peak in the density of states
�DOS�.

Single crystals of EuRh2As2 were grown out of Pb flux.3

Single-crystal x-ray diffraction measurements confirmed that
EuRh2As2 crystallizes in the tetragonal ThCr2Si2 structure
with lattice parameters a=4.075�4� Å and c=11.295�2� Å
at 298 K. The compositions of two crystals were determined
using energy dispersive x-ray analysis, yielding the average
atomic ratios Eu:Rh:As=20.8:37.9:41.3. The ��T� and
magnetization M versus applied magnetic field H isotherms
were measured with a Quantum Design Magnetic Property
Measurement System �MPMS� superconducting quantum in-
terference device �SQUID� magnetometer. The ��T�, C�T�,
and Hall effect were measured using a Quantum Design
Physical Properties Measurement System �PPMS� instru-
ment.

For the electronic DOS calculations, we used the full po-
tential linearized augmented plane wave method with a local
density approximation functional.6 The difference in energy
of 0.01 mRy/cell between successive iterations was used as a
convergence criterion. The employed muffin tin radii are 2.5,
2.2, and 2.2 a.u. for Eu, Rh, and As, respectively. 4f elec-
trons of Eu were treated as core electrons. The structural data
were taken from Ref. 3. The total DOSs for both spin direc-
tions for EuRh2As2 and the partial DOS for Eu 5d, Rh 4d,
and As 4p electrons versus the energy E relative to the Fermi
energy EF are shown in Fig. 1. EF is located just below an
extremely sharp peak in the DOS. The total DOS at EF is
N�EF�=3.38 states /eV f.u. �f.u. means formula unit� for
both spin directions with maximum contribution from the
Rh 4d orbitals.

The ��T� data for a crystal of EuRh2As2 measured with H
parallel ��c� and perpendicular ��ab� to the c axis are shown
in Fig. 2. The powder-averaged susceptibility �powder
= �2�ab+�c� /3 is also shown in Fig. 2. The �powder�T� data
above 60 K were fitted by the expression ��T�= f�Eu+3�T�
+ �1− f�C / �T−��, where the Van Vleck susceptibility
�Eu+3�T� of Eu+3 is given in Ref. 7, C is the Curie constant
for Eu+2 with g-factor g=2,8 and � is the Weiss temperature
for interactions between Eu+2 moments. An excellent fit was
obtained with f =0.13�2� and �=12�2� K �inset�. An average
valence of 2.13�2� is therefore obtained for Eu. This is dif-
ferent from the value �2.00 obtained for EuRh2As2 in Ref.
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9, possibly due to composition differences of the samples.
The positive value �=12 K indicates predominantly fer-

romagnetic exchange interactions between the magnetic Eu2+

moments. Surprisingly, however, in Fig. 2 we observe a
sharp decrease in �ab indicating a transition into an antifer-
romagnetic state at a much higher Néel temperature TN
=47 K. The �c also shows an abrupt change in slope at TN
and becomes weakly temperature dependent at lower T. The
large value of �ab�T→0� indicates that EuRh2As2 is a non-
collinear easy-plane antiferromagnet with the easy plane be-
ing the ab plane. Magnetic x-ray scattering measurements on
our crystals at H=0 revealed both commensurate and incom-
mensurate magnetic structures in which the Eu spins are fer-
romagnetically aligned within the ab plane and where the
spins in adjacent planes are, or are nearly, antiparallel.10

A large ratio of TN / ��� can occur within mean-field theory
for a two-sublattice collinear antiferromagnet with equal
numbers of spins on the two sublattices, each with Curie
constant C /2, as follows. A spin in each sublattice is as-
sumed to interact with the same number of spins both within

its own sublattice and with the other sublattice with mean-
field coupling constants �1 and �2, respectively. Applying the
usual mean-field treatment one obtains the Weiss temperature
�=C��1+�2� /2 and magnetic ordering temperature TN
=C��1−�2� /2. Thus,

TN

�
=

�1 − �2

�1 + �2
=

J1 − J2

J1 + J2
, �1�

where J1 and J2 are the nearest-neighbor exchange coupling
constants for two spins in the same and different sublattices,
respectively. If �1, J1�0 �FM�, and �2, J2�0 �AF� one can
obtain arbitrarily large values of the ratio TN / ���. For our
case with TN /��4, Eq. �1� yields �1 /�2=J1 /J2�−5 /3.

M�H� isotherms at various T with H applied along the ab
plane are shown in Fig. 3. The M�H� data for H �c �not
shown� are proportional at all temperatures from 2 to 300 K.
The M�H� data for H applied along the ab plane are also
proportional for temperatures T�TN=47 K as seen in Fig.
3. However, for T�TN the M�H� is initially proportional but
then shows a first-order steplike increase in M at a metamag-
netic critical field Hc which exhibits hysteresis �not shown�
upon increasing and decreasing H. Above Hc, M again is
proportional to H but with a larger slope. The value of M at
T=2 K and H=5.5 T is only 1.81 	B / f.u., which is much
smaller than the expected Eu2+ saturation moment of
7.0 	B /Eu. Our data thus indicate that a first-order transition
between two antiferromagnetically ordered states occurs at
Hc. Figure 3 inset �a� shows that Hc decreases initially with
increasing T between 2 and 25 K, as expected, but then in-
creases strongly upon further approaching TN. At T=50 K
�TN we did not observe any metamagnetic transition. The
increase in magnetization 
M across the metamagnetic tran-
sition versus T is shown in Fig. 3 inset �b�. In contrast to Hc,

M shows a monotonic decrease in T and vanishes near TN
as expected.

FIG. 1. �Color online� The DOS for EuRh2As2 versus energy E
relative to the Fermi energy EF and the partial DOS versus E from
the Eu, Rh, and As atoms.
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FIG. 2. �Color online� �ab and �c versus temperature T for
EuRh2As2. The powder-averaged �powder is also shown. Inset: fit
�solid curve� of the �−1�T� data �open circles� �see text�.
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FIG. 3. �Color online� M�H� at various T with H applied parallel
to the ab plane. Inset �a�: metamagnetic field Hc versus T. The
vertical bars on the data points are the widths of the metamagnetic
transition. The solid curve is a guide to the eyes. Inset �b�: change in
magnetization 
M at the transition versus T.
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The ��T� data for current in the ab plane for H=0 and for
temperatures from 2 to 300 K are shown in Fig. 4 inset �a�.
These data indicate metallic behavior with a residual resis-
tivity ratio �RRR�=��300 K� /��2 K�=8.9. There is no sud-
den reduction in ��T� below TN=47 K as might be expected
below a magnetic ordering transition due to a reduction in
spin-disorder scattering. This is particularly surprising in
view of the sharp transitions at TN seen in ��T� and C�T� in
Figs. 2 and 6 below, respectively.

The field-dependent ��T ,H� data are shown in Fig. 4 be-
tween 2 and 100 K. A strong increase in � occurs with in-
creasing H beginning below 25 K. The magnetoresistance
percentage values MR�H ,T��100���H ,T�−��0,T�� /��0,T�
versus T at various H are shown in Fig. 4 inset �b�. A large
MR is seen at low T with increasing H: the MR reaches 90%
at T=2 K and H=8 T. From the single-band relation �c�
= �RH�H /�, where �c is the cyclotron frequency, � is the
mean-free scattering time of the current carriers and RH is the
Hall coefficient, and using our experimental RH �below� and
� data at 2 K, one finds that our MR data are in the low-field
regime �c�	0.0031 at 8 T. In this regime one normally
expects11 MR	H2 instead of the different behavior we ob-
serve in Fig. 5 inset. A positive MR can occur due to in-
creased spin-disorder scattering upon suppression of an anti-
ferromagnetic ordering by a magnetic field.12 However, this
explanation is untenable here because as shown in Fig. 6
below, the TN of EuRh2As2 is suppressed to only 	40 K in
H=8 T. Furthermore, one expects a zero MR with H �c �H�
ordered moment direction� due to AF fluctuations at
TTN.13 According to semiclassical transport theory, the
MR follows Kohler’s rule MR=F�H /��0��, where F�x� is a
universal function for a given material, if there is a single
species of charge carrier and the scattering time is the same
at all points on the Fermi surface.11 As shown in Fig. 5 inset,
the MR in EuRh2As2 severely violates Kohler’s rule.

The Hall coefficient RH was found to be independent of H
up to 8 T and is plotted versus T at H=8 T in Fig. 5. RH is
negative and increases slowly with decreasing T from 200 to
25 K but then increases rapidly below 25 K, the temperature

below which the MR also begins to strongly increase. An
unusual T dependence of RH is sometimes seen across a
magnetic transition.14 However, the strong increase in RH for
EuRh2As2 occurs below 25 K which is well below TN�H� as
shown next.

The C�T� of a single crystal of EuRh2As2 measured be-
tween 1.8 and 70 K in various H �c is shown in Fig. 6. For
H=0, a second-order anomaly with an onset at 48.3 K and a
peak at 44.3 K is observed from which we estimate TN
�46 K in agreement with the TN found from our ��T� data
above. The C�T� data for a single crystal of BaRh2As2,2 also
shown in Fig. 6, were used to estimate the lattice heat capac-
ity of EuRh2As2. Figure 6 inset �a� shows 
C�T� versus T
between 2 and 100 K, obtained by subtracting the heat ca-
pacity of BaRh2As2, adjusted for the molar mass difference
with EuRh2As2, from that of EuRh2As2. 
C�T� is consistent
with a mean-field transition at TN as follows. In mean-field
theory, the magnitude of the heat capacity jump at TN is
given by 
C�TN�= 5

2R �2S+1�2−1
�2S+1�2+1

=16.2 J /mol K2 for S=7 /2,15
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FIG. 4. �Color online� Resistivity � in the ab plane versus tem-
perature T measured in various H �c. Inset �a�: ��T� for H=0. Inset
�b�: MR below T=30 K.
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FIG. 6. �Color online� Heat capacity C vs T of single-crystal
EuRh2As2 at various H �c and for single-crystal BaRh2As2 in H
=0. Inset �a�: 
C�T� and 
S�T� vs T. The dashed horizontal line is
the value 
S=R ln 8 expected for disordered Eu2+ �J=S=7 /2�
spins. Inset �b�: � versus H.
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where R is the gas constant. This value is close to that ob-
served in Fig. 6 inset �a�. Furthermore, the entropy difference

S�T� versus T obtained by integrating the 
C�H=0,T� /T
versus T, as shown in Fig. 6 inset �a�, reaches the value
R ln 8 expected for Eu2+ moments �J=S=7 /2� just above TN
after which it becomes nearly T independent. From the
C�T ,H� data, one sees that TN decreases by only 	5 K at 8
T. Thus we infer that the strong positive MR below 	25 K
in Fig. 4 does not result from suppression of TN to these low
temperatures.

At 1.8–5.0 K, the heat capacity of EuRh2As2 obeys
C�T ,H�=��H�T+�T3, where ��7.1�1� mJ /mol K4 is inde-
pendent of H and the electronic specific-heat coefficient
��H� is plotted in Fig. 6 inset �b�. Between H=0 and 9 T, �
decreases monotonically from 28.4�9� to
17.7�7� mJ /mol K2, a remarkable reduction of 38%. This
reduction in � might be explained by a field-induced carrier
localization; however, the field independence of RH �above�
argues against such an interpretation. From N�EF�
=3.38 states /eV f.u. obtained above from our band structure
calculations for a valence Eu+2, we obtain �
=7.96 mJ /mol K2 assuming zero electron-phonon coupling.
This value is about 3.5 times smaller than the observed zero-
field value. This discrepancy suggests that the high observed
��H=0� is due to the intermediate valence 2.13�2� of Eu
inferred from ��T� above TN �Ref. 16� and that the field-
induced reduction in � toward the band structure value arises
from field-induced stabilization4 of the Eu valence toward
Eu+2 and concomitant reduction in the spin fluctuation16 con-
tribution.

In summary, our magnetic, transport, and thermal mea-
surements on single crystals of EuRh2As2 revealed an array
of interesting and unusual behaviors. From ��T� measure-

ments at temperatures T�TN, the Eu ions are found to have
an intermediate valence 2.13�2� unusually close4 to Eu+2.
The large ratio TN /��4 is very unusual. A simple two-
sublattice mean-field model where each sublattice interacts
with itself in addition to the other explains how TN / ����1
can come about. Other relevant examples of antiferromag-
nets where TN / ����1 have been reported,5,17–19 although the
authors did not take specific note of this ratio. For LaMnO3,
using Eq. �1� and the J1,2 values in Ref. 20, one obtains the
mean-field ratio TN /�=3.8, slightly larger �as expected� than
the observed value of 3.0 obtained from �=46 K and TN
=140 K.19 In retrospect, it is surprising that antiferromag-
nets with TN / ����1 are not more commonly observed. The
temperature variation in the metamagnetic field Hc as TN is
approached is anomalous. The strong decrease in the elec-
tronic heat capacity coefficient � with H at relatively low
fields up to 9 T is very unusual.21 In most metals, � is inde-
pendent of H in such fields because the magnetic field energy
of a conduction carrier is far smaller than the Fermi energy.
We suggest that the observed ��H� results from a field-
induced stabilization4 of the Eu valence toward Eu+2 at low
T. This hypothesis can be checked using, e.g., x-ray absorp-
tion spectroscopy.4 A strong positive magnetoresistance and
a strong increase in RH develop below 25 K suggesting a
possible temperature-induced redistribution of carriers be-
tween electronlike and holelike Fermi surfaces, which can be
tested using angular-resolved photoemission spectroscopy.
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